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ABSTRACT

’{;. N C?XJ [N )

Consideria direct iterative method for solving the linear system AU =Y
which arises from the discretization of a boundary value problem involving an
elliptic partial differential operator L of order 2@. Sucn iterative
methods split A into a difference A =M - N The c?itical question is
the behavior of p = max{|A|, A an eigenvalue of M']N}. In this report we

develop a theory for the determination of the asymptotic behavior of p as

h >~ 0. This theory depends on recognizing (hPN) as a weak approximation Q

to a differential operator g of order < m. Then, under “appropriate con-
ditions", p~1 - thp where AG is the real part of the minimal eigen-
value of Lu = dqu. The study of the appropriate conditions leads one to
three interesting mathematical questions: (i) relevance, (ii) Spectral

Approximation and (iii) general estimates.

Copy
¢

/.
/
/ urng\\

|

\'Nspncreo

\

R oot btetn s it



1. Introduction

An important problem that arises often in applications is the

solution of an elliptic boundary-value problem

"
-

(1.1) Lu in
(1.2) Bu =0 on 239

where § is a bounded (or unbounded) smooth domain in Rd. The boundary
operator B 1is in general a linear differential operator. However, the

simplest case is (for second order problems) merely

(1.2") u=0 on 3.

Such elliptic boundary-value problems are frequently stated in their
"weak form." Let Hm(Q) be the functions defined on 2 which have m'th
derivatives in LZ(Q). Let ﬁm c Hm(Q) be a subspace that incorporates

(in an appropriate manner) the boundary conditions (1.2). Let af(u,¢) be

a bilinear, continuous and coercive form defined on ﬁm C)ﬁm:

(1.3) a(u,¢) is bilinear, so that

(1.3a) alauy +Buy,9) = aa(u;,¢) + Balu,,¢) and
(1.3b) a(u,a9; +66,) = ca(u,b;) + éa(u,¢2) 3
(1.4) a(u,9) is continuous, so

there is a constant K > 0 such that

(1.4a) |a(u,9)] §_K||u||m-||¢||m, Yu, ¢ ¢ H




(1.9) a(u,¢) is coercive, i.e.,

a(u,u) is real and there is a constant K0 > 0 such that

. 2 ~
(1.5a) k0||u||m < afu,u), VYu e Hm .
Then, under certain appropriate conditions, the problem (1.1)-(1.2) takes
the form:

Find u e H  so that

(1.6) a(u,0) = F(¢), ¥ e H

where F is a linear functional defined on ﬁm.

Condition (1.4)-(1.6) guarantees that there is a unique solution u*.

However, in general, one cannot explicitly exhibit u*. Then, the desire
for precise quantitative information about u* 1leads tc numerical approaches.
The problem is "discretized," i.e., the problem is set in a finite-dimensional

subspace, and we obtain a system of linear algebraic equations of the form -

(1.7) AU = F . ;
Here A is an nxn matrix, n is large, and (somehow) '@
(1.8) A~a .

One approach to the solution of (1.7) is a direct iterative method based

on a "splitting" of the matrix A. We write

(1.9) A=M-N,

whence (1.7) takes the form




(1.10) MU =NU+ T .

Given a first guess, say UO, we then obtain iterates UJ from the

scheme
(1.11) PTEALIST R

We are now almost ready to discuss the problem of this report - the

asymptotic behavior of the spectral radius of the iteration matrix

(1.12) K=M'N.

It is well known that the convergence of the iterative scheme (11) is
determined by the spectral radius of K . Therefore we are concerned

with the eigenvalue problem

(1.12a) AMX = NX, X #0 |
and especially with L

!
(1.12b) p:= max |A| .

We suppose that this "splitting" has been arranged in some regular way

and OUR PROBLEM 1is the study of the ASYMPTOTIC BEHAVIOR OF p as

n-+o,
This is an old problem. There are results of Shortley and Weller - 1938 1

{18}, a beautiful theory by Young - 1951 [21], which extended work of Frankel -

1950 [7], an intriguing paper by Garabedian - 1956 [8], a fine book by Varga -

1962 [19]; and right now there is an active school in Brussels, Belgium




working with Beauwens [2], [3], [4] applying methods of analysis to

these problems. Of course, many, many others (at least a zillion) whom

I have not mentioned have made, and are making contributions. [ apologize
to all whose names have been omitted.

The theory of Young is based on a combinatorial concept - Property A.
The reader need not be expert in this theory. However, I do wish to

mention one interesting and important consequence of this theory.

For {block) Jacobi schemes which have Property A, if X\ is an

eigenvalue of M']N, so is (-A)!

Our approach to this problem can be outlined as follows. We rewrite

(1.12a) as
A{M=N)X = (1-2)NX,

and if A 40 (A=0 is a particularly uninteresting case) then

e .

(1.13) ax = (A90nPax .

ARP )
That is, 'E
(1.14a) AX = uhX , 5
(1.14b) =12 R - P, :

where p 1is as yet undetermined., Because A arises from L in some

natural way we hope to find a related eigenvalue problem of the form




(1.15) tU=Aqu , Bu=0 on 30,

where q is a differential operator of degree lower than 2m (< m in fact!).

Thus in some sense

(1.16) hPN ~ q .

Then, "if all goes right," there will be an eigenvalue X of (1.12a)

with
. x| = o

and
12 u= o),

where W AO + iT 1is a particular eigenvalue of (1.15). Then

1

A = =1 -4 hP + o(hP)
1+uhP m
and
p =1 - P+ o(hPy .
In his basic paper Garabedian [8] began with equation (1.11)
as applied to the error ek+] =u - uk+] and wrote
M(El_tl'_e]) = ](N M)ej = -1 Asj
At At - At )

This expression led him to a time-dependent problem

du

Y 5 T Gy *lu,

+ Buyt




which in turn led to the eigenvalue problem

(1.18) Lo = Alyu -ou -Buy] , Bu=020

and the condition

-Agot 2
(1.19) p=e =1 - AOAt + 0(at")

where AO is the "smallest" eigenvalue of (1.8).

As one develops this idea one finds many interesting mathematical
questions that must be resolved before one can assert the validity of
(1.19). Garabedian neither raised nor resolved these questions. Yet in
the particular cases he discussed, we believe his results are correct.
In one case (the five point star for the Laplace operator) these results
follow independently from the theory of Young [21], [22]. There is a

large amount of computational experience that indicates the validity of

the results in the other case (the nine-point star for the Laplace operator).

In this report we develop the theory in a very general setting,
The theory and results are useful and interesting in themselves, However,
we shall also emphasize three interesting mathematical questions that

this theory brings to the forefront. These are:

(i) Spectral approximation.
(i1) Relevance:= a study of properties of those eigenvalues A
with
Al = o .
(iii) Estimates:= clearing out the unimportant and providing a

basis for proofs of Spectral approximation.

) [\ ~

A A

— L




2. Examples

We start with a simple 1-dimensional example

(2.1) "= f, 0<x<]
(2.2) u(0) = u{l) =0 .

Let us consider the simplest finite difference approach to this problem.

Let
_ ]
(2.3) ‘¢ h —m

and let A be the nxn tridiagonal matrix

_ 1 1
(2.4) A=y . . . =5 [-1,2,-1].

1
e However, we

have chosen this normalization both because it is appropriate for the

Most people would expect to find LJE) rather than
h

presentation of our theory and because this normalization is appropriate

from the finite element point of view.




To this end, with each vector
U= (u.l,uz,...un)T
we associate a continuous piecewise linear function
u(x,h)
which is linear on each interval kh < x < (k+1)h and satisfies
u(kh,h) = Up s u(0,h) = u(1,h) =0 .

The space of all such functions is designated Sh . Then (sce Figure 1)

for every two such vectors U, V we have

1
(2.5) V*AU = J v (x,h)u'(x,h)dx = alu,v) .
0

Thus in this exampie we see exactly how A and a(u,$) are associated -

recall (1.8).

Figure 1
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In any case, the boundary value problem (2.1)- (2.2) is replaced by

the Tinear system
(2.6) AU = F

where the vector f is related to the function f(x) . For example,

in the simplest case
T
F = h({f(h),f(2h),...f(nh}) .

The (point) Jacobi iterative scheme'(which we certainly do not recommend,

but discuss as a simple example) is given by

-
0

2 1
(2.7) gpygtt =l LI
h hlo o 1
1
10
Hence
A=M-N
with
2
(2.8a) M= = I

. { y
o S MRS W ‘ ‘
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and
0 1 7
1 0 1 <:::>
2 - 1
(2.8b) N = B 0 1 0 1 = h[],o,l].
O |
0 1 0
L _

It happens that the eigenvalues and eigenvectors of M'1N are

known [19]. These are

(2.9) A, = cosmkh , KK = (sinnkjh)g=1 .

/\

[>

Figure 2

Remark 1: This particular scheme does indeed possess property A - and

it is indeed true that the eigenvalues appear in pairs

(A A -Ak) .

nek+l ~




n

Remark 2: Consider the eigenvalues X with

x| =p .
There are two, x] and xn . In this case

(2.10) o =X =cosmh=1-27%% 4+ o(h

1
1 2

Let us write

T T

(2.11) A=—-T1T-W-W =D-W-W

o> o

where W 1is a strictly lower triangular matrix. Then the Jacobi scheme

Jjust discussed is given by

(2.12) % 1o - ek 4 F

and the corresponding eigenvalue problem
AMX = NX, X %0

is a "nice" standard problem for the eigenvalues of a real symmetric matrix
N relative to a positive definite matrix M.

The associated point Gauss-Seidel iteration scheme is given by

Uk+1 T

(2.13) R EMITLLELTLY:

and its associated eigenvalue problem is not a regular problem: N is not
symmetric and M is not positive definite, But there are some saving

features. The matrix




12

is a nonnegative irreducible matrix. Hence the Perron-Frobenius theory

[19] tells us that there is exactly one eigenvalue A with
x| = o

and, in fact, that X satisfies

Indeed, the theory of Young [21], [22] tells us that

(2.14) o = (cos )2 =1 - n2h8 + o(h?) .

Another important scheme based on the representation (2.11) is the

SOR-w (successive overrelaxation) scheme. Let w be chosen with
0<w< 2.,

Consider the scheme

(2.15) Lio-an ¥ = Lran™+ (w)oq0® 4 £

This method is known to be convergent [19] and if u 4 0 is an eigen-
value of this SOR-w scheme then there is a k, 1 < k < n, for which u satisfies

the equation

(2.16) (i +w-1)2 = w(cos Tkh)2y .

For our purposes we need only observe that (see page 111 of [19]): for
each w, 0 < w < 2, the solutions u are either real and positive or

complex, and both u and § o are eigenvalues. In either case, there is




N T

13

an eigenvalue XA with

and
(2.17) Re x >0 .

Remark: In all three cases we have discussed the "relevance" question -
as defined in section 1. In a few pages we shall see why this is indeed
relevant,

Let us now return to our general problem
(*) AMU = NU .
Then
A(M=-N)U = XAU = (T-A)NU .

Hence if A $# 0 we obtain

That is
(2.18a) AU = pNU
where
(2.18b) w= A f = Py
AhP
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The exponent p has not yet been chosen. Consider the Jacobi
iterative scheme (2.7).

Let us write (2.18a) in the "weak form“: Find U so that
(2.18c) VFAU = VU, wveC' .

Using the basic (finite element) fact (2.5) we have

1

n

- . _ p-] -
(2.19) J v'(x,h)u*(x,h)dx = ph kZ]vk[uk”mk_]] .
0

Since the left-hand-side of (2.19) is an integral and the right-hand-side

is "almost" a Riemann sum, we choose

(2.20) p=2.
We write
u -2u, +u
_ k+1 k k-l
[uk+1+uk-]] B 2uk * hﬂ_~—_‘77—_—_—}

and (2.19) becomes

(1 +h%4) V*AU = 2u hY VU

or
1 1
(1 +h2u) j v'(x,h)u'{x,h)dx ~ 2p j vix,hlu{x,h)dx .
0 0
If we ignore the term hzu we see that we have convinced ourselves
that the eigenvalue ¥ of (2.18) - with p = 2 - is related to eigen-

values of the weak problem
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' 1

|

i (2.21) a(u,¢) = A J 2u(x)e(x)dx .
0

Our first question is: does (2.21) have eigenvalues? Because (2.21)

is the weak form of

(2.22a) -u" = Ag(x)u, 0 <x <]
(2.22b) u(0) = u(1) =0
with .

(2.22c) q{x) =2

the answer is yes. In particular, we come to the first part of our
discussion of spectral problems. The problem (2.21) (or equivalently

(2.22)) possesses a minimal eigenvalue A0 >0 . In fact

1.2
(2.23) AO -?TT N

Our next question is: Do there exist eigenvalues of (2.18) near AO?

Let us be more precise: Let us define

Spectral Approximation (a): Let & > be given. Then there is an hO >0

such that for each h, 0 < h < ho, there is an eigenvalue wu(h) of (2.18)

satisfying
[Ag-u(h)] <& .

Now our question js: Is Spectral Approximation {a)} true? In this case the

answer is yes!




Because the answer is yes, there is an eigenvalue

A = A(h) = ——

1+h"u(h)
of (*) and
A=1- % ﬂzhz + o(h2) .
Hence, by the definition of o
(2.24) 021 -5 th? + o(h) .

In order to complete the discussion and reobtain (2.10) we must know that
the eigenvalue problems (2.18) and (2.21) are relevant to the eigenvalue
problem (*). For example, suppose we did not know the eigenvalues of (2.18)

and (as is not the case) the eigenvalues X with [A| = p all satisfied
A <05

then the corresponding u satisfy

1-)
lu(h)| = | =] # + =
Ah

Thus, these eigenvalues of (2.18) are not relevant to the limiting eigen-

value problem (2.21). Let us define

Relevance: There are constants C, >0, h, >0, and for 0 < h <h

0 0
there is an eigenvalue A with |A| = p and

0

T-)

_’ e
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In addition to the question of relevance we must discuss

Spectral Approximation (b): Let u(hn) be a sequence of eigenvalues

of (2.18) with hn + 0. Suppose

i

uth ) >, :

3

Then yu_ 1is an eigenvalue of the limiting equation (2.21). :
In this case, because of the variational characterization of eigenvalues

of (2.18) and the variational characterization of the eigenvalues of (2.21), *

it is not difficult to prove that Spectral Approximation (b) is true and we
can complete the argument as follows. Let A(h) be a relevant eigenvalue

with

A(h) = p(h) .

Because we know (from very general considerations) that the Jacobi scheme is

convergent, we deduce from (2.24) that

e -

1 -5 h +o(h) < A(h) <1,

and hence the relevance condition is satisfied with

Therefore the associated eigenvalues wu(h) of (2.18) are uniformly bounded. f

Hence a subsequence, say u(hn), converges to an eigenvalue of (2.21), say wu_.

Then

%i? = u, +o(1)
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and

A =1 - wh?+o(n?) .

Hence, because My, is of the form

o=l ,

o)

~N

we get

2
(2.26) A=<t -Eathl v o(n?) |

Combining (2.26) with (2.24) yields (2.10).

This approach was used by Parter [11], [12] to establish a general theorem -

[ in the self-adjoint case. More recently Parter and Steuerwalt [14] have extended
that argument to finite difference equations for the general second order ellip-

tic operator, and to related parabolic problems.

Now let us consider the Gauss-Seidel iterative scheme. Following our recipe

we obtain (2.18) with

=) —

(2.27) N [0,0,1]

and

n
T p-] -
(2.28) V*NU = h kZ]vkuk+1

I S st . .
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Hence, arguing as before we have

{2.29) p=2
and
n n u -u
- - -, k+l "k
(2.29b) vefiu = b F Vup + hih [V S5
k=1 k=1
Because

2
k+1 Y ~Yk
gV, K)| < [nv2TFn] 4% | .
our equation (2.19) becomes

]
(2.30) J vi(x)u'{x)dx = uhZVkuk + uhe(v,u)
0

where (using standard inequalities)

(2.30b) Je(v,u)] < Co”"”Lz'“”'”Lz'

In this case we are led to the related problem

]
(2.31) alu,$) = A J u(x)e(x)dx , Vo eSh
0

This is the weak form of the problem

(2.32a) -u" = Ag(x)u, 0 < x <1
(2.32b) u(0) = u(1) =0
with

(2.32c) q(x) =
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In this case

_ .2
AO =T
and we are led to conjecture that
(2.33) o =1 -1°n% 4 o(h?) |

As we know - see (2.14) - this is correct!! Let us see what we must prove
in order to apply our general arguments.

Once more, general considerations imply that the method is convergent.
And, as we have indicated earlier, the Perron-Frobenius theory implies that
p is itself an eigenvalue. However, as we have said, in this instance the
eigenvalue problem (1.12a) is not a self-adjoint problem while the eigenvalue
problem (2.32a) is a self-adjoint problem. Hence in this case the verifica-
tion of the spectral approximation property is not so simple.

Now let us consider the point SOR iterative scheme (2.15). With our
knowledge of the nature of the final results based on the SOR theory of

Young [21], [22] let us set

(2.34a) w=2~Ch,
> _1-x
(2.34b) N=nhN, M= S o
i.Eo,
p=1

A direct computation shows that

Lo Y o
PO G U SR,

P z
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~ 1 o- - ke Y
VAU = h[[5 €IV, u, + hzvk[——h——]
(2.35)

2o
+ O(h"hv v )
Thus we are led to compare the basic discrete eigenvalue problem

(2.18a) with the eigenvalue problem
(2.36a) s AfpCuru'l, 0<x<
(2.36b) u{0) = u(1) =0 .

Thus, in this case

1
(2.37) q=7C+%(-.

Once more we ask our basic questions:
(i) Does (2.36) have eigenvalues?

(i1) Is Spectral Approximation (a) true?

(iii) Is Spectral Approximation (b) true?

(iv) What about the relevance of the eigenvalues of
the discrete problem (2.18) to the eigenvalue
problem {(2.36)?

In this simple case we know all the answers and may apply our theory.

We hope these examples have given some notion of how one proceeds with
these ideas. However, in all the examples so far, (because we have been
dealing with "point" iterative schemes) it would seem that the "weak form"
of eigenvalue problem is unnecessary. We can readily recognize (2.18a) as

a consistent approximation to the eigenvalue problem

PVt - S v==IlI=llﬂ==l==‘i




(2.38)

22

-u" = Aqu , u(0) = u(1) =0.

Hence we close this section with a simple - but complex - example: the

"4-point Jacobi Scheme.” However, let us once more remind the reader that

this procedure is not being suggested as a means of solving this simple prob-

lem. It is an interesting example of the ideas involved in this theory. Let

(2.39)

n = 4¢

and let A4 be the 4 x4 matrix

(2.40a)

B
A4 - F ['1’29'1] s

and give M and N the induced block tridiagonal structures

(2.40b)

E=N
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0 |r
T
1O R O
7
R 0 R
1
(2.40C) N-F RT
O R
RT 0
L _J
(0 0 0 0
0 O 0
where R =
0 0 0 O
1 0 0 o

As usual, our iterative scheme is given by (1.11). We take

(2.41a) N=nlN, p=2,
(2.41b) "= l—; .
Ah
Then
-~ 0-] - -
* =
(2.42) v*NU hsg] [v4s+]u4s +v4su4s+]] .

Clearly, if

Vasy1 T Vas Ugser T Ugs
then (2.42) suggests that V*NU is a Riemann sum based on a ax of 4h.

But the multiplier of (2.42) is h. So we rewrite (2.42) as

(2.43a) VENU = 4h § V4uasq ‘

{
" — - - -wuhﬁ%iiﬂﬁll.i!l!!tb!ii
RS
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where

!
(2.43b) 9=3 =

FI N
o

Thus we are led to the eigenvalue problem
(2.44a) -u" = Aqu , wu(0) =u(1) =0,
(2.44b) q =

In this way, after answering our mathematical questions of Spectral

Approximation and "relevance," we have

(2.45) =1 - 21%h? + o(h?

Py ) .

Similarly, if we consider the k-point block Jacobi iterative scheme we

obtain
(2.46) o = 1 - %-w h% + o(h

While the results (2.45) and (2.46) are interesting, we invite the
reader to see N - as given by (2.40c) -~ as a consistent approximation
to the function q{(x) = 1/2 . In fact, the operators N that arise
in block schemes with large blocks all behave as does (2.40c). They

are rather nasty operators. They are the "homogenization" operators of

Babuska [1] and Lions [5].
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3. A More Formal Qutline

Let us reconsider what we have done. Beginning with a matrix A

that is related to the differential operator L or, equivalently,

to the bilinear form a(u,$), we write

-1

A=M-N, (M exists)
and consider the eigenvalue problem
(3.1) AMU = NU .

Qur concern is with the spectral radius
(3.2) o = max|A| .

We rewrite (3.1) as

(3.3a) VRAU = ViU, Wy eC"

where

(3.3b) TILLIS .
AhP

Having done this we seek to discover an operator gq such that
q: Hm - L2

and, in some way, we may recognize (3.3) as an approximation to the

weak eigenvalue problem

(3.4) a(u,0) = A J j faluldxdy . ¥o <.
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Then we assume
A.1) The eigenvalue problem {3.4) possesses a "minimal"

eigenvalue

(3.5) Am = AO + 4T .

with AO >0 . By "minimal" we mean that for any

eigenvalue A we have

0 < AO < Red,
and if Re A = AO then
8,0 < 1AL,

A.2) Spectral Approximation {a), (b): for h small enough

there is an eigenvalue u(h) near Am , and the limit
of every convergent sequence of eigenvalues {p(hh)}

of {3.3a) is an eigenvalue A of (3.4).

A.2) Relevance: There are positive constants C0 > hO S0
that for every h < h0 there is an eigenvalue X of

the basic eigenvalue problem (3.1) that satisfies

and

Under these circumstances it is an easy matter to show that

(3.6a) o=1- thp + o(hPy

e

.

1
TEETIT T

E—y
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H When one can prove the truth of Spectral Approximation (a), (b) but

cannot discuss the relevance question one obtains

(3.6b) p>1 - P +o(hPy .

This result involves two of the three mathematical topics discussed
in the introduction. We have not yet discussed "estimates."
In the discussion of the point Jacobi iterative scheme (2.7) we were

led to (2.19). We then wrote

(3.7a) hE v (U gy ) = hZ(Z)Vkuk + e(v,u) !
and

]
(3.7b) nE ¥, (U yptuyq) = j 2% (x)u(x)dx + E(v,u) .

0

In dealing with the 4-point Jacobi scheme we wrote - see (2.42) -

e

{
o=-1
- - _ - ~ l-‘i
(3.8a) hsz1(v4s+]u4s +Valgeay) = DL 2V g+ E(V,U) |
4
and
o=1 _ . ! 1eo .
(3.8b) hSZ](v%Hu4s +V4su45+1) = f (§)vudx + E(v,u) .

0

Pty

In these formulae, the terms e(v,u), &(v,u), E(v,u), E(v,u) represent

"errors" that can be estimated. The question is, is it sufficient
merely to recognize these errors as being small provided that u(x), v{x)

are "nice, smooth" functions, or are more precise estimates required? In our

work to date we have met two situations. In the first case - and by far
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the most common one -- one can easily prove: if (3.3a) holds and

| v{x) 1is smooth then

(3.9a) VAU = alu,v) + ol vl +llully )
m
(3.90) vl = [ [ Falulaxay + olllv il +llully )
m

where ||v|lS denotes an appropriate norm of v. In this case the

proof of the validity of the Spectral approximation hypothesi: is

relatively straightforward. In the finite element case this result

follows from the (by now) standard theories - e.g. see [10]. For the 1

finite difference case we carried out an appropriate modification of

the standard argument for a special problem in the non self-adjoint

case [13]. The ideas in that work generalize. Of course, when both (3.3a)

and (3.4) are self-adjoint the Spectral Approximation problem is much simpler.

One can use the variational principles that characterize eigenvalues to ob-

o

tain the desired results. Such proofs of Spectral Approximation based on

——  —

variational arguments are quite old - see [20].
In our general work with Steuerwalt on finite element equations we

used very precise estimates, which we will discuss in Section 5, to obtain

e — _‘E'

a new convergence theorem. Moreover, as we will see in Section 5, those

estimates are extremely useful in the discovery of "q."

Lo,
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[ 4. Finite Difference Methods - 2nd Order Problems

( We now consider a special case that arises often in practice: 2nd

order linear elliptic operators in 2 dimensional regions, i.e.

Lu:= - [(aux)X +(bux)y +(buy)x +(cuy)y]
(4.1)

+ d]uX + dzuy + dou .

Actually, the fact that we are considering only 2-dimensional problems is

merely a notational convenience. The ideas of this section generalize

to elliptic problems in any number of dimensiors.
In many finite difference equations for such problems we may write

the unknown as Ups? where we imagine

R

Ui u(kax,jay) .

That is, the underlying space of functions are continuous piecewise

linear functions and the unknowns {ukj} are merely the function values
at selected points in the region £. In this setting it is convenient
to use double indices to describe the vector {"kj} of unknowns.

Correspondingly, the matrix A of our basic problem (7) is described by

pairs of double indices. We write (7) as t

(4.2) gﬁakj,cuucu = fkj .

Let's assume that

(4.3a) V*AU = a(u,v) + sa(u,v)
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where
(4.3b) ea(u,v) = o(alu,u) +alv,v)) . ]

In many iterative schemes we have a relatively simple splitting (1.9)

that satisfies

Condition S:

T R T T YT Y

(1) If akj,ou = 0 then nkj,ou = mkj,op =0 .

(2) 1f Myi,ou # 0 then Mj.on = 'akj,ou . |

If Condition S 1is satisfied then we take ¢
(4.4) o= h2N, u=l—'—%

Ah

Remark: The fact that p = 2 and we use h2 is related to the fact ;
that this is a second order equation, not to the fact that this problem ‘
is set in 2 dimensions. In d dimensions we have (we hope the notation A
is clear)

B e

d-2
a =0(h %) .
k1k2...kd,0102...0d

Let us compute VANU . We have

: ~ 2 -
P * = . . .
? (4.5) V*NU = h 3& ) "3, on'kj%ou

i Thus

| o o
4.6 *NU = h n . u, .+ .

}, (4.6a) V*NU kzj[dzu kJ,cu]kaukJ €(u,v)

r where

b
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~ 2 o -
(4.6b) e(uv) =h TV, LIn . (u -u )],
Kj Ki“ gy kJ»ou'ou kJ
In finite difference methods there is usually a fixed integer r > 0 such that

“kj,on - 0
unless

|[keg| < r and |j-u| <r.

Hence for "smooth" functions u we expect £(u,v) to be small,

Specifically, we anticipate

2.% b
j] ¥*a(u,u)* .

(4.6¢) 18uv) | < Knh T lv,

Thus, at first glance, our candidate for g is given by

| n . ~Q . .
| d% kisou Ik

|
!
|
}
However, as we have seen in the case of the 4-point block Jacobi scheme, F
it may well be that akj =0 for most (k,j) . Indeed, if our "blocks" |
are large, this will always be the case. Hence, we must take this fact ;
into account. !
1 Assuming that the nonzero values of ij occur with some regular 3

pattern throughout the mesh we may try

alxy5) ~aq

where o 1is a parameter that describes the density of points (k,Jj)

at which akj is (structurally) nonzero.




Now one has a candidate for q and must proceed to consider the
problems of Spectral approximation and Relevance. As mentioned earlier,
the work of Parter and Steuerwalt [14] and Parter [12] discuss this

problem in great detail.
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5. Finite Element Equations

In dealing with finite element equations one can be overwhelmed with
the complexity of the search for "q." In a recent paper [15] Parter and
Steuerwalt presented a general theory for the linear systems that arise
in the finite element approximation of elliptic problems.

In addition to presenting this general approach in the finite element
setting, [15] deals with a specific group of problems. These problems
illustrate the complexity as well as the value and significance of

appropriate "estimates." Let
(5.1) Q = {{x,y), O0<x,y<1}

and let L be given by (4.1). We assume this problem is coercive. The
finite element space Sh is the space of tensor products of Hermite cubic
splines based on

] 1
AX = —— , Ay =
px+1

Thus to each point (kAx,jAy) we associate a 4-vector

Uy = [ukj.AX(ux)kj,(Ay(uy)kj,AxAy(uxy)kj] .
Therefore in general at each point there are 144 coefficients and V*NU involves

Vs Vys vy, ny’ Us Uy, U s uxy' In Figure 3 we exhibit the "9-point block star'

associated with the simplest problem
-Au = f, Ax = Ay =h .

Since the finite element theory usually gives estimates on the H] norm




........ - SR BIRS i i Ssuaigone  asbinin - e -
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_r 0012/1 0SLE/1-  0SlE/L polz/el G/S1/y- 0 Sle/e~ 0 0012/l 0S1E/1L 0S1lE/L ooLe/eL-
0sLE/1 00L/¢€ 00L2/e1- o02/1 0 Ges/2¢- 0 0 0SLE/L- 00L/€ ooLz/el  02/1
oste/1- O00Llg/gl- o0L/¢ 0z/L- sle/e 0 GL1/2 0 0S1€/1- oo12/€t 00/t 0z/t
goLe/el 0z/L- 02/1 SLL/bS- 0 0 0 SLL/20t- | oovz/el- 0z2/1- 02/1- SLL/YS-
GISL/b- SLE/Z 0 0 SLS1/91 0 0 0 SLSL/v-  sle/e 0 0
Gle/e- SLL/2 0 0 0 626/821 0 0 GlE/ SL1/2 0 0
0 0 526/¢2- 0 0 0 626/821 0 0 0 525/22- 0
0 0 0 SL1/201L- 0 0 0 SLL/Y29 0 0 0 si/eot-
ootz/L  osle/L- OSLE/L=  oorz/eL- | SLSL/b- 0 51€/2 0 00l2/L  0SLE/L  OSLE/L- 0012/€L
0SlE/L 00L/€ ooLz/eL 02/t~ 0 G25/22- 0 0 0SLE/L- 00L/€ oo0tz/sl- o0z/1L-
0slLE/ L o0L2/e€l  o0L/t 02/1- GlLE/Z- 0 SLL/2 0 0slE/ L 00L2/€1- 00L/¢ 02/1
loo—m\m—.. 02/1 02/1 SLL/bs- 0 0 0 g/L/zoi- | ootg/€l  o0e/l 0e/1- SLL/bS-
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and does not estimate the point values of Uys uy and uxy it would seem

difficult to discover the needle "q" 1in that messy haystack. However,

the finite element spaces generally have some regularity and estimates.

In this case we obtain

Theorem 5.1: Let h = vAxAy . Then there is a constant K > C, depending

on r = %% , such that for every u, v ¢ Sh and every ¢ € C](ﬁ) we have
(5.2a) W2 T vyl < KIVIE
iJ 2
2 -
(5.2b) h® 1 Usvi%5 " J J uvgdxdy + 8(u,v,9) ,

iJ

2 2 2 2 2
(5.2¢) h g% [Ivij-vi+1,j! + Ivij'vi,j+1| ] < kh l[VvI[LZ ,

6 o
(5.2d) 23 3 (Ax)I(Ay)azl(Dau)ijlziKh2||Vu|[€ ,
2

ij lal=1
2 { ey BytE; B
(5.2¢) h°J{ I () T %y T8 0%), (0P L1 < Kkn(uvLh)
i3 |lal #1 81 >1 Y Lo
where
(5.3a) [6(u,sv,0)| < K[ + ][] v8]|  In(utv,u-v,h)
and

(5.3b)  nlu,v,h) = hC[full, ovil, + [fv]l, llvull, + n[[vul], JIoull, ].
L, L, L ) L, Lo
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Let us see what these estimates mean, The estimate (5.2b) asserts

that
hzz VU~ j J vudxdy
ij iJ )

The estimate (5.2c) justifies the sort of index shifting that we did in
(4.5), (4.6). Generally speaking, (5.2c), (5.2d), (5.2e) tell us that we
may ignore many terms - both in the discovery of gq and in verification
of Spectral approximation. This is particularly true if the splitting

satisfies Condition S of section 4.

Moreover, with the estimates of Theorem 5.1 one can prove: There is a
relevant eigenvalue A with [X| = p that satisfies (A.3) provided that

there is such an eigenvalue with eigenvector U satisfying
Re U"NU > 0 .

See Theorem 5.1 of [15]. Notice that block Jacobi schemes that possess

Property A always possess this property. This result yields new convergence

proofs that do not depend on having self-adjoint problems or equations of

"positive type." The main results are:

Theorem 5.2: Consider the k-line block Jacobi method (horizontal lines).

Then

(5.4) alxy) = B ey, re R,

and the spectral radius pJ(k) satisfies

T—
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2

(5.5a) 0,000 =1 - I 1 (ay)? + o(hd)

0

where FO is the minimal eigenvalue of the eigenvalue problem
(5.5b) Ly = Aclx,y)v .

The spectral radius oGS(k) for the k-line Gauss-Seidel scheme

satisfies
(5.6a) pes(k) = 1 - %kFO(Ay)Z + o(h?) .

Similarly, the spectral radius pb(k) of the SOR scheme with optimal

choice of w satisfies

(5.6b) pp(k) = 1 = 2(3 1) %ay + o(h)

Theorem 5.3. Let the unknowns be ordered lexicographically and consider

the point Gauss-Seidel iterative scheme. Then

a(xsy) }—;’-g [ra(x,y) +]; c(xy)1 ,

and

2, o(h2) .

©
v

21 - Agh

Notice: In this case we cannot claim asymptotic equality. In the self-

adjoint case we know [19, Theorem 3.6] that the method is convergent. After
all, Gauss-Seidel is always convergent for positive definite problems. Unfor-
tunately, it appears that none of the proofs of this fact gives any quali-

tative information about the eigenvalues XA with [A| = p .

I
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6. Finite Elements and Point SOR

The results of the previous section do not yield results for the “point"
SOR scheme applied to the finite element equations. Nevertheless there are
several reasons for seeking such results. For one thing, experimental re-

sults by Fix and Larsen [6] and Rice [17] imply that for

1
h<T6

the SOR iterative schemes are preferable to direct solution methods.

Part of the strength of the finite element method is the fact that one
need not have a nice regular array of mesh points. One puts points where
they are needed and effects the necessary triangulation. Thus we would
not always expect to be able to use nice regular blocks for iterative methods.
Hence in these situations we would expect to be using point SOR rather than
k-1ine schemes or other regular block schemes.

Finally, because this point SOR scheme does not fall within the Young
theory (i.e., we do not have property A) there does not exist an efficient
adaptive algorithm (see [9]) to determine the optimal w.

For these reasons Parter and Steuerwalt undertook a study of point SOR

for the model problem
~Au = f
where the coefficients of A are given in Figure 3. We set
N=hN, w=2-Ch

and find that




39

u .14 : u s=U .
(6.1) w2207y s [_u_;l__uj +n2 102y vkj[kﬂ,ﬂ k,{l

h - -
+ Tﬁ z[(v_y)kjukj -vkj(u_y kj] + IJ(U,V)

where the "junk term" J{u,v) is "small" for nice enough (u,v) . Thus

we have a candidate for q , namely

156 1
(6.2) qu:=CT7—u+Wu +u .

o
[aM]

This leads us to consider the eigenvalue problem

-Au = -(uXx +uyy) = Aqu in Q,
(6.3)
u=0 on 3 .

As usual we must ask about Spectral approximation and Relevance. The
truth of Spectral approximation does not follow from the standard theories,
and we cannot say anything about the Relevance question.

In this case, because the operator L 1is the Laplacian and the operator
q also has constant coefficients we may apply the Garabedian change of

variables

A 102

(6.4) u = v exp{- 3 (T7§ x+y)}
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and complete the analysis of our {lower bound) candidate
Blw) =1 = AglCIh .
Let
V2 %
(6.5a) ¢, = 158 m[41029]
then
Case 1: 0<ccx« Cy
(6.5b) hgle) = __l.‘é.QT_f_g £
[41029] b ;
Case 2: cy <c< 2/h f
150 1 2 2 ] i
(6.5c)  Aglc) = T & o {(156¢)° -27°(41029)}7 . |

[41029]5 b [41029]
We observe that

d
— A (c) = w0
de 0 c

=cb+

and Ao(c) ijs linear in ¢ for 0 < ¢ < <y -

While we cannot assert that we have found p{w), we have found a candi-
date for a lower bound p(@) that exhibits the characteristic features of p(w)
in the classical case where property A holds. It is our hope that the
nature of ©B(w) will be useful in the construction of adaptive algorithms

for the determination of an optimal w.




7. Concluding Remarks

e

In the previous sections we have attempted to elucidate a theory
for the estimation of the asymptotic behavior of the spectral radii

of iterative schemes for elliptic problems. This theory has two main

interesting mathematical points.
(1) The theory does not lose sight of the elliptic operator L.
(2) The theory leads one to study other mathematical questions
that are interesting.

Finally, while we have not attempted to describe the usefulness

of the theory, it is very useful - even though the basic constant AO

is generally not accessible.
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